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Assessment of Carotid Artery Plaque Components
With Machine Learning Classification

Using Homodyned-K Parametric
Maps and Elastograms

Marie-Hélène Roy-Cardinal, François Destrempes, Gilles Soulez, and Guy Cloutier , Senior Member, IEEE

Abstract— Quantitative ultrasound (QUS) imaging methods,
including elastography, echogenicity analysis, and speckle statis-
tical modeling, are available from a single ultrasound (US) radio-
frequency data acquisition. Since these US imaging methods
provide complementary quantitative tissue information, char-
acterization of carotid artery plaques may gain from their
combination. Sixty-six patients with symptomatic (n = 26) and
asymptomatic (n = 40) carotid atherosclerotic plaques were
included in the study. Of these, 31 underwent magnetic reso-
nance imaging (MRI) to characterize plaque vulnerability and
quantify plaque components. US radio-frequency data sequence
acquisitions were performed on all patients and were used
to compute noninvasive vascular US elastography and other
QUS features. Additional QUS features were computed from
three types of images: homodyned-K (HK) parametric maps,
Nakagami parametric maps, and log-compressed B-mode images.
The following six classification tasks were performed: detection
of 1) a small area of lipid; 2) a large area of lipid; 3) a large
area of calcification; 4) the presence of a ruptured fibrous cap;
5) differentiation of MRI-based classification of nonvulnerable
carotid plaques from neovascularized or vulnerable ones; and
6) confirmation of symptomatic versus asymptomatic patients.
Feature selection was first applied to reduce the number of
QUS parameters to a maximum of three per classification task.
A random forest machine learning algorithm was then used to
perform classifications. Areas under receiver-operating curves
(AUCs) were computed with a bootstrap method. For all tasks,
statistically significant higher AUCs were achieved with features
based on elastography, HK parametric maps, and B-mode gray
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levels, when compared to elastography alone or other QUS
alone ( p < 0.001). For detection of a large area of lipid, the
combination yielding the highest AUC (0.90, 95% CI 0.80–0.92,
p < 0.001) was based on elastography, HK, and B-mode gray-
level features. To detect a large area of calcification, the highest
AUC (0.95, 95% CI 0.94–0.96, p < 0.001) was based on HK and
B-mode gray level features. For other tasks, AUCs varied between
0.79 and 0.97. None of the best combinations contained Nakagami
features. This study shows the added value of combining different
features computed from a single US acquisition with machine
learning to characterize carotid artery plaques.

Index Terms— Carotid artery plaque, elastography,
homodyned-K distribution, machine learning, quantitative
ultrasound (QUS), random forest classification, tissue
characterization.

I. INTRODUCTION

STROKE is one of the main causes of long-term disability
and is triggered by carotid atherosclerotic plaque rupture

in approximately 20% of cases [1]. When an atherosclerotic
plaque has a high risk of rupture, it is deemed vulnerable.

Magnetic resonance imaging (MRI) is currently the gold
standard for carotid plaque assessment [2]. This imaging
modality allows identifying intraplaque hemorrhage, plaque
ulceration, plaque neovascularity, fibrous cap thickness, and
the presence of a lipid-rich necrotic core or calcification.
Some of these plaque characteristics, such as a large lipid
core, intraplaque hemorrhage, fibrous cap rupture, and gadolin-
ium contrast enhancement (neovascularization), are associated
with symptomatic carotid artery plaques [3]. Asymptomatic
patients with carotid plaques identified as high risk with MRI
are particularly exposed to future cerebrovascular events [4].
However, MRI is a time constraining and expensive imaging
modality. Moreover, protocols allowing high-resolution carotid
plaque imaging are mainly used for research purposes and are
not widely implemented on commercial MRI scanners [5].

Duplex ultrasound (US) is the first line examination to grade
artery stenosis, whereas computed tomography or MRI is used
to corroborate stenosis grading and evaluate intracranial and
arch extension of atherosclerotic disease before endarterec-
tomy [6]. In addition to stenosis quantification with duplex and
color Doppler imaging, US elastography can evaluate biome-
chanical properties of plaques. Other quantitative US (QUS)
imaging methods aiming at quantifying the microstructure
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of biological tissues can also be obtained by processing
a single US radio-frequency data acquisition. As described
next, these US imaging methods may thus provide additional
and complementary quantitative tissue information and have
been investigated for carotid artery plaque assessment. The
underlying hypothesis is that vulnerable plaques differ from
nonvulnerable ones in their tissue biomechanical properties,
morphology, and composition [7].

The strain (deformation), assessed with MRI elastography,
has been found lower in complex carotid artery plaques
[American Heart Association (AHA) stages IV to VIII] than
in simple ones (AHA stages I to III) [8]. Classification of vul-
nerable carotid artery plaques based on combined elastography
and B-mode US imaging had increased sensitivity, specificity,
and accuracy compared with classification based on elastogra-
phy or B-mode imaging alone [9]. US strain indices were also
correlated with cognitive impairment scores in patients who
underwent carotid endarterectomy of plaques with high-grade
stenosis [10]. Texture analysis applied on US strain images of
MRI-detected vulnerable versus stable carotid artery plaques
revealed higher local deformation magnitude and deformation
pattern complexity in vulnerable plaques [11]. US strain
imaging was also able to differentiate between fibrous and
atheromatous carotid artery plaques using high strain index
and area of the inner plaque layer [12]. A recent review of
carotid artery stiffness measurement methods reported that the
presence of plaque and the occurrence of incident stroke are
associated with increased vessel stiffness [13].

Besides strain imaging, QUS has been investigated in the
context of carotid artery plaque assessment, and echolucent
plaques were correlated with an increased risk of stroke [14].
Lipid-like echogenicity in carotid artery plaques was also
associated with higher plaque instability in asymptomatic
patients [15]. Moreover, ultrasonic plaque features were asso-
ciated with unstable plaques validated with histology [16], and
were included with clinical information in a cerebrovascu-
lar risk stratification model for asymptomatic subjects [17].
Recently, gray-scale US features were associated with
histopathology markers of carotid plaque vulnerability [18].
Even though carotid plaque echolucency is associated with
a high risk of stroke, a recent review suggested that
this feature alone is not a powerful enough risk factor
to select asymptomatic stenotic patients for surgery [19].
First- and second-order textural features, based on gray-level
co-occurrence matrix, were correlated with visual classifica-
tion and histological examination of carotid plaques [20].
In [21] and [22], global measures of echogenicity and texture
were proposed to characterize the 3-D echo morphology
of carotid plaques. Parametric echogenicity maps based on
Nakagami m-parameter were first introduced in the pioneer
work of Shankar et al. [23]. This method was then further
refined in [24], based on a coarse-to-fine approach. In [25],
another statistical method based on discrete Fréchet distance
between bimodal gamma distributions was proposed for the
classification of echolucent carotid plaques.

In previous studies [26] and [27], we have proposed elas-
tography parameters to characterize tissue deformation of
carotid artery plaques. We have also developed statistical QUS

parameters based on homodyned-K (HK) modeling that were
related to tissue microstructure in the context of aggregated
red blood cells [28] and breast lesions [29]. In this study,
we hypothesize that the combination of elastography with
other QUS features in a machine learning scheme can charac-
terize plaque components with a higher accuracy than elastog-
raphy or other QUS features alone. Specifically, as a primary
endpoint, noninvasive vascular US elastography (NIVE), HK,
Nakagami, and echogenicity features were combined in a
random forest classifier to evaluate MRI-determined amount of
lipid and calcified plaque components, and to detect a ruptured
fibrous cap. As a secondary endpoint, the proposed method
was also applied to differentiate MRI-categorized nonvulner-
able plaques from neovascularized or vulnerable ones, and to
study patient symptomatology.

II. METHODOLOGY

A. Database

Atherosclerotic plaques of the internal left or right carotid
artery (with >50% stenosis) were assessed in this study.
A total of 66 patients were recruited: 40 patients presented
carotid artery plaques that were not associated with neurologic
symptoms; 26 patients had a stroke or transient ischemic
event that was related to the studied plaque. For patients
with neurologic symptoms, the ipsilateral carotid side was
chosen, whereas the side with the most severe stenosis was
considered for asymptomatic subjects. This study has received
institutional review board approval. Written informed consent
was obtained from all participants. This population has been
studied in [26], [27], and [30].

B. US Imaging

Plaques of internal carotid arteries were scanned in longi-
tudinal view by an experienced radiologist with an ES500RP
system (Ultrasonix, Vancouver, Canada), and cine loops of raw
US radio-frequency data sampled at 20 MHz were recorded.
Acquisitions were performed with a linear array transducer
(L14-5/38) characterized by a 7.2-MHz center frequency. The
frame rate ranged between 19 and 25 frames/s and data were
recorded for approximately 10 s.

The carotid artery plaque contours in each image of the US
cine loops were delineated using a semiautomatic segmenta-
tion method [31]. All segmentations were verified by an expe-
rienced radiologist. Elastograms, HK and Nakagami statistical
parametric maps, and echogenicity parameters were computed
from acquired RF data within the segmented carotid artery
plaque region. Reconstructed B-mode sequences were used
for statistical parametric maps and echogenicity measures.

C. MRI Imaging

The study was divided in two phases and subjects from
the second subgroup of 31 participants had an MRI examina-
tion (T2-weighted imaging, proton-density-weighted imaging,
and unenhanced and contrast-enhanced T1-weighted imaging)
[26], [27]. MRI cross-sectional images of the carotid artery
were obtained with a dedicated surface coil. Nine symptomatic
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carotid artery plaques were included in the MRI substudy;
the remaining 22 plaques were asymptomatic. Images were
acquired 1 cm below to 3 cm above the carotid artery bifur-
cation with a voxel size of 0.6 × 0.5 × 3 mm3. Details on
MRI acquisitions and image analysis can be found in [27].
MRI images were used as a reference method to assess the
lipid and calcium contents of each plaque, the presence of
intraplaque hemorrhage and neovasculature, and status of the
fibrous cap (ruptured, thin, or nonruptured). A plaque was
categorized as vulnerable if it contained either a ruptured
fibrous cap, a intraplaque hemorrhage, neovasculature, or a
thin fibrous cap with a large lipid core (at least one cross-
sectional lipid area above 25%).

Computer-aided manual segmentation of plaque compo-
nents was performed on MRI images with specialized software
(QPlaque MR 1.0.16, Medis, The Netherlands) [32]. Lumen,
vessel, and plaque component contours were traced on each
cross-sectional image to provide area measurements.

D. Elastography Parametric Maps and Selected Biomarkers

Axial strains, axial shear strains, and axial and lateral
translations of a carotid artery plaque were measured locally
within small measurement windows and averaged over the
segmented plaque area. Mechanical motions were induced by
the natural artery pulsation. Axial motion parameters are in
the US beam direction, whereas lateral ones are perpendicular
to it. Strain represents either compression or dilation of plaque
tissue components, whereas shear strain can be viewed as an
angular deformation or change in shape of tissue components,
occurring during the cardiac cycle. Translations correspond to
rigid motion of plaque tissue components. These 2-D defor-
mation maps were computed with a NIVE method [33], [34]
implemented and integrated into imaging software (Visual,
Object Research Systems, Montreal, QC, Canada).

Time-varying curves of these elastograms averaged over the
whole segmented plaque were plotted over time to produce
instantaneous strain, shear strain, and translation curves. The
instantaneous terminology refers to estimates computed from
pairs of consecutive frames in the cine loop. Because ECG
gating was not available, cardiac cycles were manually iden-
tified on these curves. Instantaneous curves were cumulated
over time for each selected cardiac cycle to obtain cumulative
parameter computations. To emphasize localized high motions
presumably attributed to lipid pool deformation of vulnerable
plaques, instantaneous and cumulated curves were also com-
puted by considering only pixels with highest magnitude in
elastograms, as in [27]. In this case, a threshold was used
to select the 25% highest strain, shear strain, and translation
values on each frame.

Specific biomarkers were then extracted from axial strain,
axial shear strain, axial translation, and lateral translation
curves (with or without thresholding). Otherwise specified,
the maximum of these biomarkers was computed from
instantaneous measures. These features are: maximum and
cumulated axial strains (MaxAS and CAS), maximum
and cumulated absolute shear strains (Max|ShS| and C|ShS|),
cumulated axial translation (CAT), cumulated lateral

translation (CLT), and the CAS to CAT ratio [27]. Feature
values were averaged over all complete cardiac cycles of
a cine loop. A total of 14 elastogram features were thus
available as input in the classification model. In detail,
for MRI-determined plaque component and vulnerability
classification tasks, only thresholded translations and axial
strain features, and unthresholded shear strain features were
used to avoid statistical redundancy of parameters, as done
in [27]. On the other hand, for patients’ symptomatology
classification, only unthresholded parameters were used,
as in [30]. Thus, for each task, 7 out of 14 elastography
features were used in the input vector, according to the task.

E. Other QUS Parametric Maps and Selected Biomarkers

Prior to estimation of HK parameters, pixels within the pre-
viously delineated plaque were classified with an unsupervised
method into a maximum of three labels, since carotid artery
plaques may present three distinct main constituents (i.e., lipid,
calcium, and fibrosis). Thus, a segmentation algorithm based
on a Markov random field model [35] was used with each label
representing a distinct probability density function of the echo
envelope (without log compression) of the radio-frequency
data within the plaque. The probability density functions for
this task were modeled as Nakagami distributions, as done
previously for US echo-envelope characterization [36], and
were estimated with the expectation–maximization algorithm
adapted to US images [37]. Nakagami distributions were
estimated for each cine loop and the pixels classification
algorithm was applied to each image of the US cine loop.
An example of a B-mode image of a segmented carotid artery
plaque is displayed in Fig. 1(a). Fig. 1(b) shows pixel labeling
(classification) within the plaque; in this case, two classes
of pixels were found by the algorithm based on Nakagami
modeling.

Based on the assumption that the echo envelope is
distributed locally according to a single HK, ε, σ ,
and α defining this distribution were estimated locally
based on log-moment statistics [38]. HK estimations were
performed within local sliding windows of size 2 × 2 mm2

(52×13 pixels2), with center position sweeping the segmented
plaque region with a step of four pixels axially and one pixel
laterally. To estimate parameters from a single HK distribution,
only pixels corresponding to the same (Nakagami) probability
density function of the echo envelope (i.e., with the same label
as that of the center of the sliding window) were used [28];
Fig. 1(c) presents an estimation window for HK (and
Nakagami m-parameter, see below), and those pixels with
the same label as the center pixel of the estimation window
are shown. (Other pixels correspond to the B-mode image
of the plaque.) The HK parameters yielded three metrics
considered in [39]: the mean intensity μ = ε2 + 2σ 2α, the
reciprocal 1/α, and the coherent-to-diffuse signals ratio k. The
mean intensity μ is akin to B-mode echogenicity; we actually
considered its normalization μn by the maximal intensity
within the plaque. α is the scatterer clustering parameter; a
greater value indicates a greater acoustical homogeneity within
the scattering medium. It was more convenient numerically to
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Fig. 1. (a) Example of a segmented carotid artery plaque superimposed on a reconstructed B-mode image with a pixel size of 38.5×149.6 μm2. Segmentation
was performed on radio-frequency-based reconstructed B-mode images but under the visual guidance of a second scan performed with an HDI 5000 system
(color duplex mode, L7-4 probe, Philips Healthcare). (b) Plaque pixel labeling into two classes. (c) Schematic representation of a clipped sliding estimation
window of 2×2 mm2 (white rectangle). The pixels with same label as the center pixel of the estimation window (corresponding to a single probability density
function) are represented in yellow; the other label is not displayed. QUS HK and Nakagami parameters associated with the center pixel of the window were
estimated using only the yellow pixels inside the window.

consider the reciprocal of α, rather than α itself, since a per-
fectly homogenous scattering medium would have an infinite
value, whereas 1/α = 0. We also selected a fourth parameter,
the diffuse-to-total signal powers ratio 1/(κ + 1), considered
in [28]. A greater value of k or κ reveals the presence of a
coherent echo component, due possibly to periodic alignment
of scatterers or specular reflection [39], or highly structured
spatial organization of scatterers [28]. In contrast, a low
value of these two parameters is an indicator of randomly
positioned scatterers within the scattering medium.

Based on this procedure, four HK parametric maps
[μn , 1/α, k, 1/(κ + 1)] were produced on each frame of a
US cine loop. This approach of estimating echo envelope
statistical parameters on clipped sliding windows was also
applied to obtain Nakagami m parametric maps. Indeed,
the label maps, previously computed for HK parameter esti-
mation, were also used to select pixels corresponding to
a single probability density function of the echo envelope
within each window, for Nakagami m-parameter estimation.
Biomarkers could then be extracted from the above five
parametric images. Specifically, mean and interquartile
range (IQR) of each map were computed for a total of 10
QUS features. Values were averaged out over all frames of a
cine loop. QUS computation was performed using C++ and
MATLAB R2010 (MathWorks, Natick, MA, USA) computer
programs.

In addition, four classical features based solely on
echogenicity were also computed [17]. They were obtained
from gray-level intensity of reconstructed compressed B-mode
images, after normalization of gray levels between 0 and 190,
as proposed in [17]. The value “0”corresponded to the lowest
gray level in a 3-mm-thick region adjacent to the plaque
in the lumen, and the value “190” was assigned to the
highest gray level in a 3-mm-thick region adjacent to the
plaque in the adventitia and surrounding tissues. The 3-mm
regions were bounded by the lumen and plaque contours and
by these same contours shifted axially (by 3 mm) toward
the lumen and adventitia, respectively. Computed features
were the mean gray level (MGL), coefficient of variation

TABLE I

LIST OF FEATURES EXTRACTED FROM QUS AND ELASTOGRAM

PARAMETRIC MAPS. FOR QUS, THE TYPE OF EACH PARAMETER
IS INDICATED IN ITALIC (HK—HOMODYNED-K;

NAKAGAMI; AND ECHOGENICITY)

of gray levels (CVGLs), percentage of low intensity gray
levels (PLGLs) (i.e., <75), and percentage of high intensity
gray levels (PHGLs) (i.e., ≥150). These four echogenicity
features were computed over all carotid artery plaque pixels of
a cine loop, for a total of 14 QUS features, besides elastogram
features. All features considered in the selection process of the
machine learning strategy are summarized in Table I.



ROY-CARDINAL et al.: ASSESSMENT OF CAROTID ARTERY PLAQUE COMPONENTS 497

F. Random Forest Classification
A random forest classifier [40], [41] consists of multiple

decision trees, each tree selecting a class according to an
input vector of features. The random forest classifier then
outputs the class that is attributed by the individual decision
trees, with highest frequency. Random forests are not prone to
overfitting and have a small number of parameters to adjust
during training [40].

Random forest classification was thus used to assess the
presence of plaque vulnerability, lipid content, calcium con-
tent, fibrous cap status, and to confirm the relation with
symptomology (i.e., to differentiate patients that had a stroke
or transient ischemic event from asymptomatic ones). Lipid
and calcium contents were separated into categories: two
classes for lipid and one for calcium. Six classification tasks
were thus defined. All tests were performed with package
“RandomForest” version 4.6-12 for R [42].

Overall, 14 elastography and 14 B-mode QUS features
were chosen as potential input for classification. The first
step of the classification process was to select a limited
number of features to reduce data dimensionality, and conse-
quently decrease the training time and the generalization error
(due to less overfitting). Feature selection was based on the
G-mean = √

sensitivity × specificity. This index is recom-
mended as an evaluation measure in the case of imbalanced
data [43]. The G-mean was evaluated for all possible combi-
nations of 3 or less features among the 28 proposed ones. The
40 combinations of features with highest G-mean values were
selected for training and testing classifiers. Receiver-operating
characteristic (ROC) curves were generated for each of these
40 selected feature combinations, as described as follows.
For the feature selection step, the number of trees in random
forests was set to 3000.

To evaluate classification based on retained combinations
of features, a bootstrap technique was chosen due to the
small data set (i.e., n = 31 for the subgroup with available
MRI analysis, or n = 66 for the entire database). The
“0.632+” bootstrap method evaluates the training and cross-
validation errors, and then weights them so as to predict
the generalization error [44]. The training error typically
underestimates the generalization error, while the latter is
typically overestimated with the leave-one-out cross-validation
used in statistical learning [45, ch. 7]. This bootstrap method
was selected because it showed low bias and mean squared
error for classification tree schemes applied to small data sets
of 40 and 80 samples, in the case of low data dimensionality
(less than 10 features) [46]. Stratified “0.632+” bootstrap sam-
ples were generated to construct ROC curves. The sampling
proportion of each class varied from 0 to 1, with a step of 1/39,
for a total of 40 strata. For each stratification step of ROC
curves, 1000 bootstrap samples were drawn, and classification
sensitivity and specificity were evaluated. With such cross-
validation method, each test set consists of patients data
excluded from the bootstrap sample. The area under the ROC
curve (AUC) was computed with the trapezoidal method to
evaluate the accuracy of tested classification schemes. Finally,
since the size of each random forest tree can be limited to a
maximum number of terminal nodes (MTNs), this parameter

TABLE II

POPULATION CHARACTERISTICS; VALUES ARE MEAN ± SD

was used to achieve the lowest complexity of classifiers. ROC
curves were thus constructed for each MTN varying between
2 and 20 and increasing by steps of 2; classifiers with the
highest ROC AUC were selected. In the case of a tie in ROC
values, the lowest MTN was chosen. The AUC could then be
computed for each of these 40 ROC curves. The combination
of features with maximal AUC was reported in this paper. For
ROC computations, the number of trees in random forests was
set to 1000.

G. Other Statistical Analyses

Other statistical analyses were also performed using R
statistical software (R Foundation, Vienna, Austria) and
MATLAB 2010 (The MathWorks Inc., Natick, MA, USA).
Correlation between elastogram components and B-mode QUS
parametric maps were determined to investigate any coreg-
istered spatial relation between these two different types of
information. Pixel-to-pixel correlation of each QUS map μn ,
1/α, k, 1/(κ + 1), or m with each elastogram map of axial
strain, axial shear strain, axial and lateral translations were
computed. Relationships (correlations) between echogenicity
(MGL, CVGL, PLGL, PHGL) and elastograms could not
be established because echogenicity metrics were determined
from all pixels of the cine loop; no images were produced.
Correlation coefficients were assessed on each frame of a US
cine loop. The average and maximal correlation coefficients
over all frames of the cine loop were then computed. Mean
values of these quantities over all subjects are reported.
Confidence intervals (CI, confidence level of 95%) for the
ROC AUC measurements were estimated with the nonpara-
metric jackknife method [47]. The Wilcoxon signed rank test
was used to detect statistically significant difference between
ROC AUCs.

III. RESULTS

A. Database

Following MRI imaging, 12 plaques were categorized as
nonvulnerable and 19 as vulnerable or neovascularized. Lipid
was found in 17 plaques and calcium in 27; there were five
cases of ruptured fibrous cap and two cases of intraplaque
hemorrhage. Table II reports clinical parameters of the popu-
lation and the MRI and non-MRI subgroups. Supplementary
clinical parameters derived from clinical and MRI exami-
nations can be found in [27, Table 1] and [30, Table 1].
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TABLE III

CORRELATION COEFFICIENTS (R) BETWEEN ELASTOGRAPHY AND HOMODYNED-K PARAMETRIC MAPS

Fig. 2. Histograms of maximum lipid and calcium areas in carotid artery
plaques. Lipid and calcium areas were measured from MRI 3-D examinations.

Fig. 2 shows the histogram of maximum lipid and calcium
areas. Thresholds to categorize maximum lipid and calcium
areas were determined based on these histograms. Two thresh-
olds of 10% and 25% were thus chosen for lipid content,
resulting in 15 and 7 plaques, respectively, having a maximum
lipid area (over several MRI slices of a volume) greater than
10% and 25%, respectively. A single threshold was chosen
for calcium, yielding 18 plaques with a maximum calcium
area greater than 10%. Classification based on the presence
of intraplaque hemorrhage was not attempted due to a sample
size of two.

Examples of parametric maps that were used to compute
classification features are shown for a carotid artery plaque
in Figs. 3–5 (HK parameters in Fig. 3, Nakagami m statistics
in Fig. 4, and cumulated elastograms in Fig. 5). As men-
tioned earlier, the average and IQR of the parametric maps
in Figs. 3 and 4 were computed as HK and Nakagami features
(see Table I). Cumulated and thresholded cumulated elastog-
raphy features were computed from elastograms, as displayed
in Fig. 5. Recall that maximum axial strain and axial shear

TABLE IV

CORRELATION COEFFICIENTS (R) BETWEEN ELASTOGRAPHY AND

NAKAGAMI ECHO-ENVELOPE STATISTICS m PARAMETRIC MAPS

strain features were computed from instantaneous elastograms
(not shown).

Pixel-to-Pixel Correlation Between Elastograms and
B-Mode-Based QUS Statistical Parametric Maps: Correlation
coefficients between elastograms and HK parametric maps
for the whole database are shown in Table III. Instantaneous
elastogram components were correlated with HK parametric
maps. Statistically significant correlation coefficients were
found between elastography and μn , k, and 1/(κ + 1)
parametric maps; however, average correlation values were
low. Parameter 1/α had no coregistered spatial correspondence.

Table IV shows correlation coefficients between instanta-
neous elastogram and Nakagami echo-envelope statistics m
parametric maps. Statistically significant correlations were
found with the axial shear strain and axial translation. Again,
average correlation coefficients were low.

B. Classification Results

Six classification tasks were defined: detection of: 1) a
small area of lipid; 2) a large area of lipid; 3) a large
area of calcification; 4) presence of a ruptured fibrous cap;
5) differentiation of nonvulnerable carotid plaques from
neovascularized or vulnerable ones; and 6) differentiation of
symptomatic from asymptomatic patients. A schematic repre-
sentation of a random forest that was used to detect a large
area of calcification is shown in Fig. 6. To evaluate the added
value of combining elastography with B-mode QUS features,
different sets of inputs were used for each classification
task: 1) elastography, HK, and B-mode gray-level features;
2) elastography, Nakagami, and B-mode gray level features;
3) elastography features alone; 4) HK and B-mode gray-level
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Fig. 3. Examples of HK parametric images of a plaque on the near and far walls of the carotid artery superimposed on a longitudinal B-mode image.
(a) Parametric map of the mean intensity μn . (b) 1/α parametric map (in logarithmic scale)—a lower value of 1/α indicates a greater acoustical homogeneity
within the plaque. (c) k parametric map. (d) 1/(κ + 1) parametric map—a greater value of k or κ reveals the presence of a coherent component. μn , α, k and
κ are dimensionless.

Fig. 4. Example of QUS Nakagami m parametric map of a plaque on
the near and far walls of the carotid artery superimposed on a longitudinal
B-mode image. m is dimensionless.

features; and 5) Nakagami and B-mode gray level features.
For each task and each set of inputs, 40 combinations of
features were selected and their ROC curves were constructed;
the ROC curve with the highest AUC was kept.

Table V shows results of the six classification tasks and
five sets of inputs. For each classification task, the statistically
significant highest AUC is marked in bold. Gold standard
was established with MRI imaging for the first five tasks
(n = 31). The gold standard for the last task was based on
patient symptoms (n = 66).

IV. DISCUSSION

In this study, elastography and QUS were combined to
detect plaque components such as lipid, calcium, and ruptured

fibrous cap, and to identify vulnerable and symptomatic carotid
artery plaques. These tasks were performed with random forest
machine learning classifications. The goal was to evaluate the
classification gain associated with the combination of different
QUS features rather than to identify precise features to be used
for carotid plaque characterization, as this objective would
require larger data sets.

To identify possible correspondence between QUS cellular
metrics and plaque mechanical properties, pixel-to-pixel
correlations were computed between all parametric images of
acquired US cine loops. This task also aimed at identifying
possible redundant information because it is preferred
in machine learning to use uncorrelated features [48].
Statistically significant associations were found as listed
in Tables III and IV. However, the highest statistically
significant correlation coefficient was 0.17 on average, thus
indicating low redundancy. All parametric maps were hence
kept in this study.

Feature selection was performed before random forest clas-
sification, due to a high number of features compared to the
data set size. The maximum number of retained features was
empirically set to 3; combinations of four features have also
been tested using the same feature selection method but they
resulted in lower AUCs (data not shown). Fig. 7 shows the
training and generalization AUC-ROC with increasing number
of features in the random forest for a given classification task
(maximum calcium area ≥ 10%). As expected, the training
AUCs increase and remain high with an increasing number
of features, while the generalization AUCs (computed with
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Fig. 5. Examples of elastograms of a plaque on the near and far walls of the carotid artery superimposed on a longitudinal B-mode image. (a) CAS (%).
(b) Cumulated axial shear strain magnitude (%). (c) CAT (mm). (d) CLT (mm). Images were cumulated during the diastolic phase of the cardiac cycle.

TABLE V

CLASSIFICATION RESULTS TO DETECT: 1) A MAXIMUM LIPID AREA ≥ 10%; 2) A MAXIMUM LIPID AREA ≥ 25%; 3) A MAXIMUM

CALCIUM AREA ≥ 10%; 4) THE PRESENCE OF A RUPTURED FIBROUS CAP; 5) VULNERABLE OR NEOVASCULARIZED

CAROTID ARTERY PLAQUES; AND 6) SYMPTOMATIC CAROTID ARTERY PLAQUES

bootstraps) reach a maximum with three features. In view
of the sample size, overfitting could explain lower AUCs
for classifications with more than three features. We avoided

overfitting conditions in this study. However, with a larger
database, combinations of more than three features would
certainly be relevant.
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Fig. 6. Schematic representation of a random forest to detect a large
area of calcification. The first and last trees are shown. The final decision
is 0 (negative) or 1 (positive).

Fig. 7. Training and generalization AUC-ROC for different number of
features in the random forest. AUC-ROC computed for the classification task
to detect a large area of calcification.

Plaque components have been previously investigated as
predictors of cardiovascular events. They provide stroke risk
stratification in patients [2]. A systematic literature review
has shown that the presence on carotid plaque MRI of
a thin/ruptured fibrous cap, a lipid-rich necrotic core, and
intraplaque hemorrhage are associated with increased risk
of future stroke or transient ischemic attack [49]. Moreover,
carotid artery plaque fibrous cap status and lipid content were
strongly associated with cardiovascular events (myocardial
infarction, ischemic stroke, acute coronary syndrome, coronary
revascularization, and cerebrovascular revascularization) [50].
Calcium is also known to be a stabilizing component of a
plaque [51] but large calcification volume was, however, asso-
ciated with intraplaque hemorrhage but less lipid content [52].

AUCs of all classification tasks with different sets of input
features were reported in Table V. In all cases, statistically
significant higher AUCs (p < 0.001) were achieved with
a combination of features among elastography, HK, and
B-mode gray-level ones (Table V, lines 1 and 2), when
compared to elastography alone (Table V, line 3) or QUS
alone (Table V, lines 4 and 5). All combinations of inputs
yielding the highest AUCs contained elastography features;

four out of six combinations of inputs contained HK features;
all combinations also contained B-mode gray level features.
The Nakagami m-parameter was not selected in any input
combination providing the highest AUC-ROC, likely because
of its redundancy with HK features [53]. For the classification
task of detecting a maximum lipid area ≥ 10%, different
combinations of features provided similar AUC-ROC.
For the task of detecting ruptured fibrous caps and vulnerable
or neovascularized plaques, a combination without HK
features was not statistically significantly different from the
combination containing an HK feature. These results are in
agreement with a preliminary version of this study where
neural network classification based solely on elastograms
yielded a specificity of 67% for a sensitivity of 83%; whereas
with combined QUS features of different types, the specificity
was raised to 79% for the same sensitivity [54].

The lowest AUCs were obtained in the case of detection
of a maximum lipid area ≥ 10% (0.79 with 95% CI of
0.77–0.82), and identification of patients with symptomatic
carotid artery plaque (0.83 with 95% CI of 0.81–0.84). For
all other classification tasks, AUCs greater than 0.90 were
obtained: 0.90 (95% CI of 0.80–0.92) for detecting a max-
imum lipid area ≥ 25%; 0.95 (95% CI of 0.94–0.96) for a
maximum calcium area ≥ 10%; 0.97 (95% CI of 0.95–0.98)
for a ruptured fibrous cap; and 0.91 (95% CI of 0.89–0.93)
for identifying vulnerable or neovascularized carotid artery
plaques.

The proposed method was able to detect a ruptured fibrous
cap even if US imaging does not have the resolution to perform
visually this task. Since an active inflammatory reaction is
associated with ruptured plaques [55], we hypothesize that
changes in plaque tissue microstructure and composition,
which are related to ruptured fibrous caps, could be detected
by the proposed machine learning classification method.

Carotid artery plaque characterization was also previously
addressed with US imaging methods. Lipid core and calcium
assessment was investigated with acoustic radiation force
impulse US imaging, yielding AUCs of 0.89 and 0.86 for
identification of soft and stiff plaque components, respec-
tively [56]. Vulnerable and stable plaques were also classified,
based on strain features, with an AUC of 0.85 [57]. In another
study, (fibro)atheromatous plaques were distinguished from
fibrous ones with an AUC of 0.80, also based on strain
features [12]. Previously, we have used elastograms to identify
vulnerable or neovascularized carotid artery plaques with an
AUC value of 0.89 [27]; a lower AUC with elastography alone
(the same parameters as in [24]) was obtained in this study
(AUC = 0.86), but this may be explained by the lack of
cross-validation in our previous report. We have also used US
elastography and echogenicity combined with a principal com-
ponents analysis (PCA), which allowed discriminating symp-
tomatic versus asymptomatic patients with an AUC of 0.78
(with a single threshold classifier of the PCA variable) [30].
Better performance was obtained in the current report using
the random forest classification algorithm (AUC = 0.83).

Machine learning algorithms have been used previously to
predict stroke using echogenicity features of carotid artery
plaques with an AUC of 0.80 [58] and to predict the evolution
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of coronary artery plaque using intravascular US virtual
histology with classification performance (G-mean) between
77% and 86% depending of the initial plaque types [59].
Both studies used support vector machine classification.

Imbalanced data sets in which one class is considerably
outweighed may be associated with an overall acceptable
accuracy, though with poor performance over the smallest
class, by simply ignoring this class. Three tasks had imbal-
anced data sets: detection of a maximum lipid area ≥ 25%
(7 out of 31); detection of a ruptured fibrous cap (5 out
of 31); and identification of patients with symptomatic carotid
artery plaque (26 out of 66). Precision-recall curve (PRC)
was suggested as an alternative to ROC curve for classi-
fier performance evaluation in the case of imbalanced data
sets [60], [61]. PRC curves turned out to be the most informa-
tive tool to compare classifiers when the event rate is low [61].
PRC curves were thus computed for the three classification
tasks with imbalanced data sets for all combinations of input
features (data not shown). For task #2 in Table V (detection
of a maximum lipid area ≥ 25%), the highest AUC-PRC
were obtained for inputs Elasto + HK + echogenicity and
Elasto + Nakagami + echogenicity (lines 1 and 2 in Table V).
There was no statistically significant difference between the
AUC-PRC of these two input combinations; AUC-PRC corre-
sponding to lines 1 and 2 in Table V were 0.76 (95% CI
0.68–0.81) and 0.76 (95% CI 0.67–0.81), respectively. For
task #4 (detection of a ruptured fibrous cap), the highest
AUC-PRC was obtained with the input Elasto + HK +
echogenicity (line 1); the HK + echogenicity features thus
increased the AUC-PRC (0.88, 95% CI 0.79–0.91 compared
to 0.82, 95% CI 0.72–0.86), while there was no added
value to the AUC-ROC associated with this feature selec-
tion. For identification of patients with symptomatic carotid
artery plaque (task #6), the highest AUC-PRC was similar to
AUC-ROC (0.80, 95% CI 0.77–0.81); i.e., the combination of
elastography, echogenicity, HK, or Nakagami features.

A. Study Limitations

In machine learning, large data sets usually ensure more
reproducible results. In this study, results were based on
populations of 31 and 66 patients. (We selected one carotid
side per patient to avoid paired data.) Moreover, ruptured
fibrous caps were observed in only five cases. Selected elas-
tography and QUS features used for carotid artery plaque
characterization could thus change if the proposed classifi-
cation scheme is applied to a larger sample size. To improve
the robustness of conclusion, the “0.632+” bootstrap method
was selected and confidence intervals were provided. Adding
additional samples would reduce these intervals but may not
necessarily raise the classification performance. Nevertheless,
to confirm the findings of this study, particularly in the case
of imbalanced data sets, a larger study population would be
necessary.

To conclude, this study has shown the advantage of using a
machine learning strategy to combine different features from
the same US acquisitions for the task of identifying carotid
artery plaque components of vulnerability.
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